Классическая транзисторная катушка Тесла без двойного резонанса.
Этот трансформатор Тесла представляет собой расширенную и улучшенную версию полумостовой катушки. Та же самая топология, что и у неё (автогенератор), с некоторыми существенными отличиями, сильно улучшающими качество работы и общую стабильность и надёжность конструкции.
1. Сигнал обратной связи берётся больше не с нестабильной антеннки, а через трансформатор тока. Трансформатор тока для данной цели делается очень просто: берётся небольшое ферритовое кольцо из того же материала, что и GDT, на котором мотается витков 30-50 провода (чтобы закрыть внутреннюю поверхность кольца).
no images were found
Кольцо надевается на провод заземления вторичной обмотки, а выводы обмотки кольца припаиваются через последовательно включенный отделяющий постоянку плёночный конденсатор (>100нф) к минусу драйвера и входу диодной вилки соответственно. Подбор фазировки осуществляется либо сменой направления прохождения провода вторички через кольцо, либо переменой проводов обмотки трансформатора тока. Про теорию его работы, как и о GDT, неплохо писал BSVi.2. Драйвер усилен до простейшего двухступенчатого варианта. Зачем это сделано: UCC27425 довольно хилая, когда речь заходит о 200-250 кГц и CW-режиме (т.е. без прерывания вовсе), при суммарном весе затворов в 12-20нФ и выше. Потребление драйвера в таком режиме может доходить до 1А и выше, т.е. драйвер должен рассеивать более десятка ватт, из которых по крайней мере половина приходится на несчастную UCC, хотя штатно больше пары ватт она рассеять не может вообще. Поэтому в улучшенном драйвере UCC27425 качает не прямо GDT полевиков, а мост из четырёх небольших низковольтных транзисторов, спаянных с материнской платы. Главное условие — малая ёмкость затвора, чем она меньше, тем лучше. 500-600пф — идеально, 800 — тоже неплохо, больше 1нф — есть шансы перегрева UCC.
Раскачивать этот усилитель необходимо через свой собственный GDT с пятью обмотками, каковые должны быть правильно сфазированы (об этом ниже). На выходе между полевиками драйвера и транзисторами силовой части можно поставить также один GDT с пятью обмотками, либо два раздельных по три обмотки (по одному на полумостовой модуль). Разницы между двумя трёхобмоточными и одним пятиобмоточным я так и не заметил, но в общем случае два отдельных GDT должны быть слегка надёжнее из-за обеспечения независимого управления полумостами моста.
Драйвер разработан sifun’ом. Кстати, именно такой драйвер работает в QCW-DRSSTC, и по тому же принципу построен универсальный драйвер DRSSTC Стива Варда.
3. В качестве силовой части выбран мост, как вдвое более мощный относительно полумоста при том же напряжении питания, причём мост не на полевиках, а на IGBT (биполярные транзисторы с изолированным затвором). Сам по себе вопрос, что разумнее применять для SSTC, IGBT или MOSFET, весьма дискуссионный: полевики быстрее, IGBT имеют меньше потерь на больших токах, полевики дешевле, IGBT современнее, и так далее, но я руководствовался простым соображением: полевикам в обязательном порядке необходима обвязка диодами, что а) приравнивает по стоимости мост на полевиках к мосту на IGBT, б) добавляет весьма значительную индуктивность этих диодов и всех соединений. Здесь кроется одна из тех хитростей, которые трудно где-либо прочесть, но которые могут быть решающими при построении катушки, и несоблюдение которых может раз за разом приводить к взрыву без видимых причин. Дело в том, что, несмотря на относительно невысокие частоты работы катушки, для правильной работы силовой части необходимы резкие фронты и спады сигнала, с длинами в одну-две сотни наносекунд, т.е. с эквивалентными частотами в мегагерцы и десятки мегагерц. На этих частотах становится критична длина монтажа в силовой части, ввиду наличия у неё ненулевой индуктивности — единицы и десятки наногенри. Из-за этого могут возникать выбросы и сбои в работе, более того, судя по всему, они и возникают, и приводят к взрывам силовухи. Эту проблему можно решать, укорачивая монтаж до предельно возможного, но вот незадача: при наличии обвязочных диодов он всё равно остаётся довольно длинный, а диоды необходимы: они обеспечивают защиту полевиков при возникающем при переключении обратном напряжении, открываясь быстрее, чем собственные их встроенные (body diode). В хороших же IGBT обвязочный диод встроен внутрь корпуса, устраняя фактом своего существования необходимость обвязки, поэтому два IGBT можно соединить в полумостовой модуль практически нога-к-ноге, короче некуда, только заводские полумостовые модули, где оба транзистора уже в одном корпусе. Поэтому после взрыва полевиков я отказался от них в хоть сколько-либо низкочастотных катушках вообще. Только IGBT, только максимально плотный монтаж.
Вообще при сборке полумоста или моста основные соображения, о которых следует помнить, таковы:
а) монтаж каждого из полумостов — как можно короче, идеально — вплотную,
б) конденсаторы с низким ESR (хорошие силовые электролиты, силовые плёнки) — как можно ближе по питанию каждого из полумостовых модулей в силовой,
в) больше защиты — не меньше защиты. Варистор по питанию, стабилитроны затвор-исток, снабберы, резисторы в полкилоома затвор-исток (чтобы не убить статикой, например) — всё это продлевает жизнь хрупкого и взрывоопасного девайса, такого как трансформатор Тесла.
no images were found
4. Интерраптер сделан с т.н. бёрст-модом (двойное прерывание) на 3-х корпусах таймера NE555, по схеме Стива Варда, с подправленными номиналами частотозадающих цепей 555-х, с целью достижения большего диапазона регулирования, чем в оригинале. Как подправлять — смотрим даташит на 555 и ищем формулу зависимости частоты от номиналов конденсатора и резистора. Текущая конфигурация допускает выход в CW, т.е. работу без прерываний.5. Ввиду отсутствия в залежах деталей железного трансформатора для питания драйвера, был сделан простой понижающий питальник на IR2153 по классической схеме полумоста с флайбек.орг.ру. Мощность около 20-30W, выходное напряжение — 16В постоянки.
6. Затворные резисторы теперь используются в связке с диодом. Такая схема соединения позволяет делать разную длительность задержки фронта и спада, чтобы избежать сквозняков и затыков (IGBT закрываются медленнее, чем открываются, поэтому надо их щадить таким вот образом).
Немного о настройке моста. Как я уже писал, мост представляет собой попросту два полумоста, работающих в противофазе, т.е. с двойным размахом, равным в итоге напряжению питания (в полумосте — половине питания). Преимущество моста очевидно: вдвое большая мощность, вкачиваемая в одну конструкцию. Если детали в полумосте работают уже на пределе тока, то мост позволяет её увеличить без бабахов. Преимущество полумоста тоже очевидно: вдвое меньше деталей и намного более простые сборка и настройка. Если не нужна предельная отдача, разумнее собирать полумост.
Так вот, о настройке. Мост обычно рисуют топологически эквивалентно цифре «8», с четырьмя транзисторами по углам и нагрузкой (первичкой) в качестве перекладины. Правая и левая пары транзисторов образуют два полумостовых модуля, в каждом из которых есть соответственно верхний и нижний транзисторы. Для правильной работы моста необходимо так сфазировать сигналы, приходящие на затворы, чтобы каждые два соседние транзистора были в противофазе, а по диагоналям — в фазе. В шахматном, короче, порядке. Чтобы сделать это, необходим двухканальный осциллограф и функциональный генератор, который будет при настройке имитировать приходящий с катушки сигнал обратной связи (т. е., его выход надо подцепить на вход драйвера). Порядок настройки таков:
1) Припаиваем затворный и истоковый провода к одному любому из транзисторов (например, верхнему левому), после чего цепляем на него первый щуп, подаём питание на драйвер и генератор, и видим осциллограмму сигнала с GDT. 2) Далее берём любую другую пару проводов и цепляем к ней другой щуп. Если сигнал в противофазе, припаиваем его соответственно к нижнему левому транзистору так же, как держали щупом: щуповой провод к затвору, крокодиловый — к истоку. Если сигналы в фазе, то перед припайкой просто меняем их друг с другом местами, крокодиловый к затвору, щуповой к истоку.
3) Повторяем пункт 2 со следующей парой проводов и верхним правым транзистором.
4) Отцепляем первый щуп от верхнего левого транзистора и цепляем его на верхний правый.
5) Повторяем пункт 2 с последней, четвёртой парой, и нижним правым транзистором.
Для удобства дальнейшей работы очень помогает пометить своим цветным фломастером каждый из транзисторов, проводов (например, пометить только затворные провода) и точку припайки на плате.
Как делать резонатор, первичную обмотку, тор и прочее, рассказывать уже не стану, все и так в курсе, надеюсь.
Ценное замечание: при настройке положения первички и вторички очень важно подобрать удачное их взаимное расположение, чтобы соблюсти три условия: непробивание на первичную обмотку с середины вторичной (это не смертельно для схемы, но может прожечь дырки и вообще фу), значительный коэффициент связи для обеспечения большой прокачиваемой мощности, не слишком большой коэффициент связи — для ограничения прокачиваемой мощности 🙂 короче говоря, необходимо сделать на колечке измерительный трансформатор тока (например, 50 витков), нагруженный на известное сопротивление (например, 5 ом), и надеть его на провод первичной обмотки, подключив щуп осциллографа к сопротивлению. С его помощью по размаху сигнала на осцилле можно узнать ток, текущий через первичку и, соответственно, ключи. Пока ток находится в допустимом для ключей диапазоне — можно смело поднимать первичную обмотку относительно вторичной, до тех пор, пока не вырастет ток или в неё не начнёт бить разряд.
Резонатор сделан на 11 см канализационной трубе, длина намотки ок. 33 см, провод ф0.3 мм, покрыта двумя слоями полиуретанового лака. Первичная обмотка — 6 витков толстого монтажного провода (10 мм^2) на 16 см трубке. Максимальный ток при такой конфигурации около 50 ампер. Потребление в CW-режиме (огромное толстое слегка шипящее фиолетовое пламя в руку толщиной) — около 4-5 киловатт. Прерыватель обеспечивает массу очень интересных режимов работы с удивительно противными пищаще-трещащими звуками, слышимыми изо всех уголков жилища. Поистине бесподобные эффекты даёт насыпанное на разрядный терминал соединение натрия, например соль или NaOH (см. видео). Длина разряда — до 60 см и — возможно — больше (если выкрутить питание на 250В латром и/или добавить соли).
Собственно, фото и видео катушки, её узлов и работы — ниже. И, да, о чудо, СХЕМА!
Метки отсутствуют.
44 ответов на Полномостовая SSTC